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1.  INTRODUCTION A - I [

Under regularity conditions, the infinite set of moments (when these
exist) characterise a distribution; thus it is appealing to use the first
s sample moments, or functions of these, as test statistics for goodness
of fit. For example, the statistics b1 and b2 have long been used to
test for normality, using the first four sample moments. Gurland and
Dahiya (1970) and Dahiya and Gurland (1972), in articles hereafter referred
to as GD1 and GD2, developed this approach in a systematic way by comparing
functions of sample moments to the corresponding functions of population

moments; these functions were chosen to be linear in any unknown parameters

of the distributions.

In this article we explore some theoretical aspects of the Gurland-
Dahiya method, and also give some details of the techniques when applied to

tests for the normal, exponential, and Gamma distributions. The basic test

statistic of Gurland and Dahiya, Q_ below, has an asymptotic xi

t
distribution with t=s-q, when q parameters must be estimated and s
sample moments are used. We show how Qt can be decomposed into t

components Cj each with an asymptotic xi distribution, and such that

e e
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Qt = Qt-l + Ct . Thus as a new sample moment is added, the new test statistic

contains the previous statistic plus a new asymptotically independent term.

The statistic at thus breaks down into components in a manner similar
to the Neyman (1937) statistic, or to EDF statistics (Durbin and Knott, (1972)
Stephens (1974)); each new component might be expected to test for a new
departure from the tested distribution. When applied to a test of normality,

with s = 3 or 4, the statistics b, and b2 result naturally from the

1
method.

Also, we show that the test statistic for exponentiality, using s = 2
moments with only the scale parameter unknown (so q = 1) is equivalent to
several other statistics already proposed by various authors, often from

quite different points of view.

2. THE TEST STATISTICS

2.1 As far as is practicable, we use the notation of GD1 GD2. The

symbol ', in the matrix algebra below, will denote the transpose of a column
vector or of a matrix. In standard notation, the same symbol will be used
to refer to population moments or sample moments (u; and m3 respectively)

about the origin. In context, there should be no confusion.
2.2 Suppose the null hypothesis is

H,: a random sample XI,X

0 .,Xn comes from the continuous

e
density f(x;8),

where 6' = (0 Bq) is a row vector of q unknown parameters. We assume

19700
for simplicity that all parameters in the distribution are unknown, but the

}o-

"1 :‘J.

YN Y
Ao Gt

%

ol g
s
.I,-'_‘{

>0
iYL

z:_f

7

'3
* o

]
l."'l';

PR
Y T %

7Ty
.



PN NGNS WA WL UV WA SR IO TS 1L TRaw g% EASRUY N NNV UNOYUS AL P X FIUNVUSVEINAM ONIUR Pul JOF 790 TOR TN

)
s 2
'y M b - @
: N
v treatment may easily be modified when only a subset of parameters in f£(x;8) ::?,
e
is unknown. ':.E
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2.3  Suppose ci' i=1,...,s are functions of the population moments e
.t
M.r
wt, j=1,...,s, chosen so that g  is linear in 6,,...,6 . Thus, :gc'
J 1 1 q ':a.:f
writing g' = (cl,...,cs), we have 7 = W8 where W is an s x q matrix
"";
of known constants. .u‘*.
£
0el)
2.4 Let h, be the same vector as g, but with sample moments 000N
. 8
mi = 2:_1 (Xr)l/n replacing the population moments ui , and let :}2;::
B fleh
h' = (hl,...,hs); h 1is a consistent estimator of < . ::::::
ool
B
2.5 Consider the vector statistic v/n (h-g) , which measures the difference <
" .‘"
. between h and & . Its covariance matrix is I = JGJ' , where G is the :h:‘
KIS
s s x s symmetric matrix with entries Gij "i+j uiuj , and J 1is the |"!::
. - 'y » = ? - -= .
s x s Jacobian matrix with entries Jij (Gci/GuJ.) , (i,j=1,...,s) . o
Gurland and Dahiya show that, if the (2s)-th moment of f(x;8) exists, !
t
SO
/n (h-g) is asymptotically normal with mean = 0 and covariance matrix I ; .“c

then the asymptotic distribution of
-1 W
(1) Q=nt-3)'Z " (h-3) 'c.:,

is x_ . i

Further, if I is replaced by I , a consistent estimator of [ , -

the asymptotic distribution of Rt

) Q* =n (h-2)' 2! (h-0) O

- me e = — = - . - N

N ek NPV B e B N o *
;
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is also x: . In general, I contains some of the unknown parameters in 0 ;

~ -

L is obtained by replacing 8 in I by 8 , say, where 0 is a consistent

estimator of © .

2.6 Statistics Q and Q* will be large when the sample vector h is far
from I , but, as they stand, they cannot be used for testing the fit of the

sample to f(x;8) because they contain the unknown parameters in 8 ; in Q

-~

these arise in ¢ and I . However, when 8 is used to replace 6 in I

the resulting matrix I will no longer be a function of 6 ; thus 8 enters

?

~

Q* only through Z . Gurland and Dahiya propose that Qt , the minimum
value of Q* as 6 varies, can be used as a goodness of fit statistic;
furthermore, if the minimum occurs for 6 =8 , then © is an estimate of © ,

analogous to other "minimum chi square" estimators. The values of © and Qt

are found as follows. Define matrices

z=wzly and z=wW £l
(3) R=wzlw ! and R=wzlw !
A=zl (1 -R)  and A =370 (I-R)

where I 1is obtained as described above, and where Is is the s x s

identity matrix. Note that Z and Z are qxq; R, R, A and A are

A

sxs and R and R are idempotent. Then (GDI,GD2)

8 =Z W' X "h, and

-~

(4) Qt = nh'Ah . Define also

Q, = nh'Ah .
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Note that, to calculate Q. , it is not required to know 6 . "C.::i:

&% "2

e

2.7 Notation In the following sections we shall examine the properties o

K]

N . . ".‘i

of Qt and Qt . New matrices and vectors will be defined as required; for .:::;:'.j

‘.‘lg

'.

convenience, the most important of these can be listed together as follows:

matrix T: L = TT' where T is s x s lower triangular (definition of T).

matrix K: Z = KK' where K is q x q lower triangular (definition of K).

1..-1 -1

matrix L: L =T 'WZ W' (T') ~ , a symmetric and idempotent s X s matrix.

S = IS-L , a symmetric and idempotent s x s matrix.

P 1is the matrix which diagonalises L : thus L = PAIP' . The leading sub

matrix of Al of order q is Iq and other entries of A1 are zero.

Vector g of length s is g = T , with components g, ,g,,...,g; -
Vector £ of length s is £ = P'g = prTlh , with components EI,EZ,'...,ES .
When I 1is used instead of I the matrices become T, K, L, S, P and the

vectors become g and £ .

3. THE STATISTIC St R
3.1 Gurland and Dahiya (GD1) showed that, on H0 , the distributions of Q, (AA
and the statistic at were each asymptotically xi », with t =s -q . We '\.
now extend these results to show how the statistics can be decomposed into 5§
components. :',._ ,
)':‘1
Theorem 1. There exists a set of components Ci , 1=1,2,..., such that ::‘:
Qt = Z;sl Ci , where t = s - q ; asymptotically, the Ci are independent, (-’_,
each with a xf distribution. There also exists a set Ei » such that {;
. at = Z:_l Ei ; asymptotically the Ei are indevendent each with a xf
distribution.
TR Pedligd 4 Ry o o R e ;";:'.




_VT\(‘WF'ZXII.Z}

'\'&

-
a0

o
.

1

.
[]
o,
[]
-
el
L

"

-

- o
P, Ko 20

~ )

Thus Qt+1 2 Qt + ct.1 and Qt+l = Qt + Ct+1 ; that is, a new

o

asymptotically independent component is added to Qt to obtain Q‘“1 , and to )

Qt to obtain Qﬂ1 . b ﬁ,

For ease of notation, the proof below is given for Q, only; the proof
for Qt is very similar. In what follows, distribution theory will mean W7
asymptotic distribution theory. In this section, when s+1 sample moments ka
are used in part 2 of the proof, the vectors and matrices will carry an KN

asterisk, for example, h*, I*, T* . e

3.2 Proof of Theorem 1. Part 1

Decomposition of Qt . Suppose I = TT' where T is a lower triangular ﬁhi

s x s matrix. Then Z = W'E'lw may be written Z = KK' where K 1is a lower

triangular q x q matrix. (Note, however, that K is not W'(T')'l) . K]

n

Let h=Tg , sothat g T ; then Q, = nh'Ah becomes o

™

“~\)

-1 §g$
ng'T (I -R)Tg . g

Q,

Hence Ay

ng' (I,-L)g o

5) Q,

where ;

A.YJ

5%

L= 1T lwz lws iy

o y
et lL?
A S S

-
¢

= T'lwz'lw'(r')’1 .

B - a B, D $% WS 1% " 3% 1 (Y™ ¢ L0 ) L ‘ ! ”
'n't‘l.‘:‘u‘. .:‘I‘!‘l't‘!’, l‘!‘l‘!‘\.hl‘-‘ l'.‘\‘. AL A “' UK NN AR AL M M A LA W R N e .--‘P '. ‘u. ’1‘ v Wiy LA ‘nl’t " ‘l. ‘\.
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It is easily shown that L 1is symmetric and idempotent; thus matrix

S = IS—L is also symmetric and indempotent.

Comment. In many situations (e.g. for tests of normality and exponentiality,

to be discussed in Sections 4 and S below) L and S are also diagonal,

with diagonal entries 1 or 0 . Define Al and Az to be

where the 0 matrices have the necessary dimensions to make both Al and

A, of dimensions s xs . Then L will equal A1 and S will equal A2 ,

2

and, from (5), we have

(63 Q, = rg'Sg .

t
7 Q =n I c. ,

where component Cj = ngi’j » j=1,...,t . The independence of Cj
follows because gq#j is normal N(0,1) and the covariance of g is
T'IZ(T-I)' =1 . When S = I-L 1is not itself diagonal, it may be written

S = PA,P' where P is orthogonal. Then let § = P'g = P'T lh  and we have

52
(8) Q =nE'SE =n I &
i=q+l

O ) . , . A A LR~ " K~ "R A A " m A n % A en e a o
ST T T VT e 0, B e, Do S B h 0 B S e s L N TR R RN T e ft
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Thus again Qt is the sum of components Cj nEq’j s J 1,...,t ; each %i{u
£g+j is N(0,1) , and the covariance matrix is P'T'IZ(T'I)'P = I , so that ,'
ol

I'.l

these components are independent and xf distributed. Corresponding results ?y'?
W

~ . s AZ N . . " f!

hold for Qt , which becomes n Zi=q+1 Ei , using the notation of Section 2.7. ;ﬂﬁ

<R

Proof of Theorem 1. Part 2 v;?}

N

t

To complete Theorem 1, we must show that the same set of components : X

2anc N
. . 2 . 2 . - e

arises in Qt*l (or Qt+1) as in Qt {or Qt) with the addition of one new 3?@
)

term. For this purpose {(pursuing the general case whemn L and S are not h&%

|..|".

diagonal) we show how matrix P 1is constructed so that S = PAZP' or *\kf
N X)
equivalently L = PA P' . ;.

1 e

\ "

L ":::

Construction of matrix P. The s x s orthogonal matrix P 1is constructed ;':’

- '_" 3
as follows: let P, = T°1W(K')-1 , an s xq matrix, and let P, be an NN
?.,

s x (s-q) matrix, such that P!P. =0 and P!P, = I ; then construct N4
21 2°2 it

(50,08

s

P = [PI:PZI . , ‘

&

\ 4

N

Lemma 1: P is_an orthogonal matrix. o,

AR

'\ .L 7

Proof. To show that P is orthogonal we need PiP1 = Iq . We have

1 -1

prp. = K- lwer)! T wn

X twz ! weey !

x’lz(x')'1

1 -1

K "KK' (K')

= 1 as required.
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| ] *\
‘ ' Lemma 2: LP, =0 . .,r(
i Y

Proof. Since P;'ZP1 = 0 we obtain
:2,}-

W,

¢

- - N\ !
9) pT twk) ™t =0 ; h
KN
";‘

thus G
R, U
N
o
(10) PyT y-o, »
» %]
iy
(11) Lp, = Tz tw ) 7le, = T-IWZ-I(PéT-IW)' =0

Lemma 3: P is the matrix which diagonalises L ; L = PAIP'

SIS AL LS, v
21T AT B

S

Proof. We have

"

prep. = k"l eyl e ey i we ! :

171

-1

Lyz-Iwez - twex) Kx

K lwz”

1)

k“lzz7lzkny 7t =

1 -1 T

K™ KK (K")

[}

~

—

o
"y ¥ x_
P N

-
c
-/
[]
[
—
o
—
a4
N
[—
"
[]
=4
P
T

TRV ®

I‘.

u)\
- N

o

. . Tun ’ ’ 3
e e A AL A AP A R S e
O N AL ALY
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‘ Thus the idempotent matrix L equals PA,P' .

To complete the proof a similar procedure is now followed in s+l

dimensions. We have PI = (’I“')']'W"(l("'f1 ; and, as above, PI'P; = Iq and

P;'L*Pi = Iq. Since I is the leading submatrix of I* , it follows that

T 0
T* =
t' ¢
and
Y R
! - :
v' d

where t' , v' are row vectors of length s , 0 is a colum vector of

length s, and c and d are scalars. Also

x
*
"

wl

where w' 1is a row vector of length q . Therefore

1 9 W
-1
* = e
Pi (K**)
v d w'
[ .
1w
= (K*')-l
’ a'

LI U TR I S T A
" v

" S g —p- P Y T . B SRAPEE ¥V v 4 e AR e . -8t .
A AL AT

%

o2 222

7

-~

w R _C R A~
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where a' = v'W + dw' . Dc<fine matrix V , of dimensions (s+l1) by (s-q):

<
"

0'

where 0' 1is a row vector of length s-q .

Lemma 4. V is orthogonal to PI .

T'lw

Proof. V' Pt = V' x+y)1 = PéT'IW(K*')'I =0, from (10)
a'

Therefore, if we define

where y 1is a column vector of length s and r 1is a scalar such that
the last column simply completes PE , we have

* = *.D*
P* = [P3:P3]

Now

Qt = ng'(I-L)g = ng'(I-PAlP')g = n(P'g)'(I-AI)P'g
S
=n L E? where £ = pr7 1 :
i=g+l

s P b - - g e ST . . .
e T \ ) W ™ e PPNy Wy S, B R At O
0 R T e e e A s e e e S M
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that is,

— o
Eq#l

X -1

™ = '

: PZT h

ES

Therefore Q, = nh'(T')'IPZP;T°1h . For Q,,, we have

1 ol|n T4
(m*) " Ihe = N )
L}
v' d hs+1 v'h + dl’nM1
Hence
i-‘ -1
q+1 Pé 0{|T 'h
soe = PE'(T*)-Iht =
L}
;+l y rl{v'h + dhs+1

-1
1
PZT h

-1
y'T "h + r(v'h + dhs*l)

The first s-q components of Qt+1 agree with those of Qt . This

result, together with Part 1 completes the proof of Theorem 1 for Q, -

4. THE TEST FOR NORMALITY

4.1 We illustrate the above decomposition with the test statistic for

normality given in GD1. This statistic is constructed as in Section 2 above,

L% 0P LAY, b (R Ak " AR P " R S R ™At " " LI PRIV L aApwpn
. .Q'o.l" LN -‘o, 'o .- .-, - " '.l...A i. 3 .’u‘..

.
o, T‘h
» .I. Ao N

v,

+S &
Cx 2

e _R_m A

X .“
: |
5% D LS

-—we_w ~= - T
RS CL TYe
AT T
iy o YRS LS

f d
r

,
%

X

=

=55
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with §' = {ui, log U, Ug, log(u4/3)} - Here u,, Ws, W, are moments about :
the mean, and are, of course, functions of ui, ué, u% and ua . Then

L = Wo* where P

with 61 = ui , 02 U, and 65 = log uy Vector h 1is then given by i

h' = {ni, log mz, m3, log(m4/3)} , Wwhere m,, Mgz, M are sample central W

4 Q“’i

moments. Then (GD1, equation 4.10) \

0 32/3 !

In this example I depends on 92 but not on 61 (the component elements ]

J and G of I do depend on 61 but 61 drops out in the final calculation; gt

GD1 gives the separate matrices J and G as though 61 were zero). The

decomposition I = TT' gives

r 1 1
—_ J
(8, 0 o0 o P2 )

0 2 0 0 0 L
T= — and T = = /7
60, 0

B

(=]
]
~
(%)
L8]
(=]
(%)
oo
LIS oy 2 oA

o . . . - R
' i ORI b W KGN A ay . et DAL A BN 4 S o es s o W
-

NP ) - . S L A LR . - » , O
U A A e S N e A Y A AN A A U s.o,l’o.l.o.l'u. A D O O M O o L o D N M 0 i e 3 X M e
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Further, we have

D
l)'“
[=]

z=WZlya ‘and R =

(=]

(N L
QO O O -
N O - O
QO O O O
O O O O

finally § = T‘I(IS-R)T is

o © O ©
QO O © ©
o = O O
- O O O

S 1is diagonal, so there is no need for further decomposition of S .

Matrices L, T, 'l'.1 are obtained from I, T, '1"1

-~

estimate 62 ; then g is T'lh , and with 62 =m, , we have

- 1/2,

g' = [mi/mz . /2 3,1/2,

1
(log mz)/z : ms/(6m2 :

/2

- (log mz)(l.S)l + {log(m4/3)}(.375)1/2]

The test statistic Q2 is
Q = ng. + ngz = E + C
2 3 4 1 2

where

- ~ 2
3n M4
C,=—% and C, = 3 (-2 log m, + log ffq

A T PO K AT P Y 5 N P W
A .!‘»! .‘-In- 3 .. ... o ‘ z A

5l

by replacing 92 by its &

"0up a8 4 5.0 Sab Cah Tt -
u"'
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. 4.2 Comments. Component C1 is equivalent to bl ’milm; » and C, |is

g ; b1 and bz are the well-known measures of D)
skewness and kurtosis, often proposed for testing normality. An interesting '.:.v.

~ l‘ §
aspect of the method is that it reveals two functions of moments, Ci/z and "‘::':,:'

c;/ 2 | which are asymptotically N(0,1) and independent, and which, when N

equivalent to b2 = m4/m

squared, form the components of the overall statistic Q2 . GD1 gives the ?‘o‘t'm

final statistic Q, (there called Q in equation 4.15) but not the R
2

decomposition. The statistic 6 in this case becomes 06 = (m!, log mz)' . KA

4.3 Extension to any value of s. These results for s = 4 may be extended et

to more general s . For the calculation of I set 61 = 0 ; then a'::c'..‘

Mop = uir = 612'(2r)!/(2rr!) and odd moments are zero. GDl gives J in two !

_parts, the Jacobian J. of the transformation from central moments to origin eV

1
moments, and Jacobian J2 of the transformation from £ to central moments; Aot

= = = -in?t 3 .
J JZJ It may be shown that (Jl)ii 1, (Jl)il 1ui , 1>1;

1
l)ij = 0 otherwise; and (Jz)ii =1 if i 1is odd, (Jz).1i

even, and (Jz)ij = 0 otherwise. Let £ have entries O35 3 i,j = 1,...,s: ey

- . . - )
6] = 1/11i if i is \..:::.:

then

11 - Y2 i1

oij = T3 (i+'), -1 i,j both even ol
_lz . H

ij

2 i+ { ‘! ' ‘ I‘

Q
»

ij 0 otherwise . o':‘:‘:

. .- . e - R L. S
1 L 7Y M A e k
WO N VR, ARV VAT ) e ! RS s W% % W ¥ o "o W AV v L I IR T SR, PR Ry
B A e S et o bl T S A A2 2 T R e ot e o o

Sidlal Rl
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Then let T be the s x s matrix with entries tij defined by

= [6. = i = i >
t Jez , t..=0, j>1, ty 0, i>1

1j

Jn-1/2
t = (1) = , n<m ,
2m,2n n 2n-1,41/2
(Gh?
m+l/2
62 (2m+1)! 1

t =
2m+1,2n+1 -1 (m-n)! {(2n+1) !}1/2

t. . =0 otherwise.
I’J :

It may be shown that I = TT' , making use of the identities

g 2204y (2i2§)!
L ETEmIGmT T EDIEN!

and

§__ 2™ meke)t | (2medked)!

n=0 (m-n)! (k-n)! (2n+1)! = (2k+1)! (2m+1)!

Let U = ! and let U have entries ugy - Then

=1
i
'...
[
]
o
(W]
v
o
=
"
o
-
"]
\'4
o

. e e RN
) PR AT v e R o R B - < I - \ ; - (1
. |"..t | 4 LA Y ] e ‘.t Rl J-.u b -, A’. A '.‘ A f‘ .'w'.h W m W ¥ \ ‘\ \ . ‘.5 ‘.I "n:‘:&"
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-1)™( (2me1) 1}1/2
(m-n)!12™" 9'2“1/ 2 (ane1)!

IA
3

Umel,2nel » N

u.., = 0 otherwise.
1)

This may be checked by direct calculation of UT . Now W is the s x 2 Oy

matrix
L ]

o (1 a

F2 &

o
)

and column 1 of T MW is

e+ O O O O =
¢+t O N O

0
0 R
0

~—

- bt
Column 2 of T lw has zeros in the odd positions and in the even 0

positions the entries are N
aAt8.

1/2 m e
(Gt ) IR S VL S SO Yoo -;.?é
=1 : l

-1
(T Wop2 = ~a-1/2

=1/2Y%) when m=1, and 0 if m#1 . ;

Thus T W is the s x 2 matrix :\:::

PRG0N0

R, MO N WA BT e a0 W D 3 6 (0 (D0 o o oo
B T T T T N T M P R T Al A RRCHAS AN AL G806,




SRR AU IRE TN WO Ry T AT IR RN N 8 G B B vaW Hab nab dod dak val Al VD ¥l val €2 Sa) ¥28 e} #20 uaf v %)

. i 18- xa

[=] = -
~N
o
—
o
pLoRD

o
-
%
T
-

r
-
- 3
-
-

) &
and so 0

\
WEwe | 2 i

for all s . "'.‘.

- - - - v‘Ft
Now R =Wz i hwean il so - .

1
L 0 E Fz get!
0

X}
o

=)
LN
o
I.-
[ ]
N |~
.
- A A

e e eo © ©
‘oooNo...o.
<<
~N
S
Nl
O

,_;l
O
3
! ,o
] o
e

t s e O N O = O
[]
re
O

Fe e eo0 © © ©
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We now compute S = T (I-R)T = I-T 'RT .

Using the above expression for R we find

S=1-T'[moT

=1 - [T wio)T

- 1 . S
0 hd —] ~ “
’9—, ° Jez 0 . O 0 0 . O
“ . 0 o0
1 - Oflo »~ .
=I-1 0 & : i P
2 e o & ¢ o & o o o
e o o o o o : e o * O . I 2
. - « 77T - - ) S° =

S is again diagonal. Thus if g = T 'h where T ' is T ! with 9,

replacing © we have the general result

2’
~ sl\
Q@0 g

i=3

Now vector h has components

2 m'
hy=m

horel = ®2rag

er!
hor = 108z myp)

Because of the structure of T 1

~

even g. involve only even h., . We have, for r an integer
i i ger,

, odd g; involve only odd hi , and

D) LM ey " - . o R M R < ® » AT N Nt m e -
N, """'»Iv‘.m! (X ,"'-'n"t‘,h RVt h, !h‘,"“.. -'u et l- I R n' YT AT YIRS ' e NP AN PN, .*
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n 1
2 n! )

- r
g = z (u )h
2r n=1 2r,2n” In
2r-1
r O )
-1
. I (_1)r¢n(r) -r
n=1 e ,r-1/2
/(21"’1 T

T r-1
e v

n=1

In particular,

. m
o 13 4 2.3
g4 7J3 log( m2) , and 4 ° 3

1og (vt ™2n

n
I 0 Oogchl my)

(2n)! "2n

2
%,
[log -—J , as above;

3)
3 2
also
~ B g BeMy "y 5. 9P 2
g, = 7 log(z —37) and g = yelleg(z )]
m b
4 2
where b, =m /m2 before, and b, = m /m3
ere Dy = My/M, 35 ’ 4" MM -
The odd g; are, with T an integer,
- T
ng+1 = nEI (u2r+1,2n+1)h2n+1
. ; (-1F*n /(2r+1)! Mon+l
n=1 (2n+1)! 5;‘1/77 25 M (r-n)!
n
r /(2r+1)! I n 2 Myney
= (-1) r z (‘1) ~“#1/2
2 n=1 (2n+1}! 62 (r-n)!

. e ¥

A A G R O S A R R K s SO N M AN O OAM IR A,

", W, "f" ' . 0“‘ ‘ \A - -‘( ,“ ) ‘- ey

g aYA R et ale g4t il at §1¢ G20 8 a6 Boh BN Bt bl it dinrtra dbat 4l
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) In particular, using 62 =m, as before, we have
A m ~ m
1 3 2 1.2 3
gz = — and g- = =b. , where b = : also
37 a2 3761 1 32
2 2
==l (b, - 10b) , where b, = -5 .
&s e 3 1’ 37 572
2
Thus
b 2 9, 2
~ 1,2 3 2 1 2 5 4
Q = nlg by * gllog 5+ 35 (b3 - 106" + 3¢ (log =) }
' 2

with, on HO ,

order Qt is obvious.

a xi distribution asymptotically. Extension to higher

S. THE TEST FOR EXPONENTIALITY

~

5.1 In this section we give the general decomposition of Qt for the test
for the exponential distribution F(x) = 1 - exp(-x/6) , x > 0 . Following

GD2 we define

\ 1 |
g' = [ EE Ei Hs ] ;
1’ ul’ u' P A | u' ’
1 "2 s-1

then C = W8 , where W'

1,2,...,s] .

Vector h is § with mi replacing ui . The covariance matrix

T of /n h is then known to have entries

2.. :
- 0 ijG+j-2)! . .
% T @nro-nre 1EI
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We now write £ = TT' where the entries of T are 2$z

Then U = T ! has entries 2

Y1578 5 Y44

Further results are: (T-IW)' = (%3 0,0, ..., 0) ; Z= 1/62 ; R has first jE

column entries 1,2,...,s and all other entries zero; T-IR has 1/8 in
row 1, column 1 and zeros elsewhere. Finally S becomes diagonal, as for NY

the normal case: :gt

v
=

i

¥

and further decomposition of S is unnecessary. Let g be the i-th

~

P
‘le

-~ ~

component of g = Tl . using 6 as the estimate of 8 in T , we have,

LY
sy

l.‘A' :

with mb =1

e,
R
.
N )
el
“ap?

i (03w
I J 1l 4=
j=1 j m',

—
-
N
-
.
.
'

g ~

D |
-
'
p—
"
Ty

PR
P A

%;) 3

Y

L )

In particular, writing sj for m} for ease of notation, and using 68 = s1

we have




»

‘;-‘:.
st

"Ql'

‘23‘ —.
R - s i
gl gyl Ef“
2s ;p*‘
1 o ¢
; . s2 . Sg ; ey 352 s3 . s4 o
- —— » - - - “
3 si 3sls2 4 251 sls2 45153 4{
N

i

e
-

Note that £, is equivalent to '; "

.ﬁhﬁ

o

3 n n b

\]

-%-= nt (Xr)z/( z Xr)2 o.M
S r=1 r=1 @

A

i
The test statistic Qt is then n Zisl 814i Q
5.2 Comment. Connection with a test for uniformity. Suppose the sample X

j 3

values xi are placed in sequence on a line, and let v(j) = Zi=1 Xi H ol

A

suppose the Vis) Bre divided by the sum of the X, , z = 22=1 X; » to :S&f
. o s R

give values u(j) = v(j)/z ; it is well-known that, on HO , the 5§;{

u(j), j =1,...,n-1 are the order statistics of a sample of size n-1 from :it'

“

o
the uniform distribution on [0,1] . The values Xi/z are the spacings di :;ﬁg
between the u(j) , and a test for uniformity, proposed by Greenwood, is N

Tn

~ A )
based on G = £2=1 di . G 1is then sz/(nsi) and so component g, above is ::
. ('v
equivalent to G . There has recently been a revival of interest in G , j:f
and percentage points for finite n have been given by Burrows (1979), ]

)
Currie (1981) and Stephens (1981). These points show that +/n g, converges ?

- @w

only very slowly to its asymptotic N{0,') distribution.

6. TEST FOR THE GAMMA DISTRIBUTION

6.1 The two previous illustrations, tests for normality and exponentiality,

were interesting because the general form could be produced for any s , and
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also because for small s the test components reduced to already well-known
test statistics. In DG2 the at statistic is also discussed for the Gamma
distribution. This situation is important because although many tests exist
(EDF tests, for example) for populations in which the unknown parameters are
location or scale, far fewer tests are available for the case, as here, where

a shape parameter is unknown. Unfortunately it does not appear to be straight-
forward to give very general results, but we now develop the components of

Ql and Q2 .
The null hypothesis is HO: the population for X is

1 1 a-1 ~x/8

f(")*ﬁae—ax e ; x>0; a,8>0.
Thus q = 2 . In DG2 new parameters are defined: el = af , 92 =8

(we have here changed the DG2 notation). Then the vector 7 is given by

L' = |k i& fé- s
1 Ky ' %, Ke_1
where Kj is the j-th population cumulant Kj = (j-l)!aBJ . Then 1if

8' = (61,62) we have 7 = WO with

WV

Vector h is vector § with sample cumulants ki replacing population

cumulants Ky - Considerable algebra gives, for s = 3
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a 3+2a 10+8a

e|%,

26 10+8a  48+50a+6a ol

LN
-

Then ':c!!.':!'

a =

LX)
and ‘l‘g’l‘ \

Qe
o

8|~
=< |-

8|~

[
O &
O
L

L i

where Y2=2(1+a.) and 62 6(1+a)(2+a) . Finally T -R is 2

—
]
=~
i
—
o
]
&
(28]
i
,A'

0 -6a-28 3a+ld e

and o

0 0 0 i
1

|l
= -1 = 1/2 .'if
S=T (I.-RT = :=57 |0 4 {12(2+a)} . ": 5

0 (12(2+a)}!/? 3(2+a)

ﬂgs

o v AR LT Z"-
T N 1 R R S TP T ,?::‘
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S 1is idempotent of rank 1 as required, but, in contrast to the normal

and expunential cases, S is not diagonal. Decomposition into S = PAP'

gives
0 0 0
p=—1 0 {6+3a}1/2 2
/3a+10 1/2
(] -2 {6+a}

and Aij = 0 for all 1i,j except A33 =1.

~ Al A

4 , and £ = P'T "h , where P, T

Then using 3.2.8 we have & = P'T
are derived from P , T by replacing parameters o and B8 by consistent

~ ~

estimators 2 and (GD2 use moment estimators). Because only A33 is

8
not zero in matrix A ,

2 . . ~ 1\2
Qt = ngrag = n£3 , and similarly Qt = nES .

We need therefore find only 63 . This becomes

Es = é{;/(10+3;)}1/2w'h
where

W= 10, - (2*2;)1/2' (2+2§)1/z]
and

DO " n » " ] "U," Wy LA W T M W o W W NS '-fv"'-“_-*..“ -~ w & - R IR T NS
LAtV TR OV NGV W A iy o e T T L T A A U T oo T i

“aAr R

XA
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k ~ k
Moment estimators of a and B are a = — and 8 = - - Thus 2]

2+2a = 2(k +k2)/k , and - = ; alily
21 2 2
10+3a  (10k,*3k]) Vel

then Rttt

2 0y
R k) (k3k; -2K3)

E = . U
> i k;—fz(10k2+3kf)l/2(k2*kf)1/2 R

and et
2 XK

. nkz(ksk -2k%) ~ERY

% = 1 (k3%y=2K; )

1 : i

3 2 2
2k (10k,+3k 1) (k,*+k])

In terms of sample moments this is, writing s3 for m{ as in Section 5, .

A ns
Q

(7] PN
-
..
-

3 5= (5,55 * szsf - 25%)2
252(52'51) (1052-751) T,

2 2 . 2 . .
Note that 5153 + szs1 - Zs2 m1m3 2m2 , where mi is the i-th central ‘

moment.

6.2 Comment. The calculations above can be considerably simplified by N

Ky Ky K Moy
starting with g' = (=, —,..., ¢ 5_ ), that is, by missing out the first R
1 2 s-1 A

component in the above treatment. This has the effect of reducing the matrix "k‘

. >
and vector dimensions by 1. For s = 4 we now pursue this approach. Eﬁ“

) g o« ’RTAT ~pt AN AR AL AN e s R N Y e L N T A N Y Wt N T e N e RS,
A T e o o A o et s A N T R T 0 0 A Ry W oy W N R o P AR )
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6.3 Test for Gamma distribution, s=4. Short method. Let ’:::::E:
i
|
K, K, K el
o |2 2 A - @.s,38) - 8(1,2,3) . o
1 "2 73 fde,
"q'
s
'ﬁo:lzl'_
Then g = va where W' = [1’2.3] , and Vig'st:
K]
; T s
3+2a 10+8a 21+18a ) ::.g‘
2 Q)
4
T = -i— 10+8a 48+500.+6a.2 132*153a+27a.2 5,15
&
21+18a  132+153a+27a® 450 + 1185 o L 315 2, o3 e
L - 2 2 A “i".ﬂ
"
‘20‘
K
O Y
Ez ab ad 's""
2 oS
. = B? ab b2+c2 bd+ce f::‘\
. \-..
ad  bavce are?eg? o
X
~.-‘
Y
where a,b,d,d,e,f are defined by comparing these two expressions for I . ,:‘_
s
Decomposition of I gives 1::::
Wt
a 0 o
L = TT' where T=£~ beco 5
va (d e f
then
1 -
F a 0 0
1./ | b 1 0
B ac c
be-cd _ e 1
acf cf f_J
and

f R A N A e P N S e 2
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"
e e -1 !Q
1 1 3

a a )
_ P
-1, /@ {2 b _ /& |2a-b - 0
TW=5 T 2 - B |Tac =T, say. .'."::
s
3 _ 2e , be-cd 3ac-2ae+be-cd ’ﬁ
f cf acf acf !

- - T -

AN
.
- -1 - 8
We have Z = W'L lw = W' (T") lT lw =r'r, so that Z is scalar. Matrix L J:
thy

becomes )
\.'
- )
L = T IRt "
)
i
- - - !
= 7wz vy iy

-1,-1 -1.-1 »
=2 T WW'(T') T T since Z is a scalar e
e 7l w11y !
5

szl ey = 27 e )
l':;
"
1/2 .
Define 2z to be the normalised vector r , that is, 2z = r/(2) . Then .

L=2zz2'. ?ii

We now construct P such that PAP' =L .

Clearly column 1 of P is vector z . From the solution for s = 3

we know colum 2 has components (b-2a,c,0), normalized. Lastly column 3 is

-cG
(b-Za)G ’
[(b-2a)2+c?]¢
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normalized, with G = be-cd-2ae+3ac . The normalizing factor is m where

2
m2 = czcz*(b-Za)ZG2 + [(b-Za)2+c2] f2

2
s [c2e(b-22)216% + [c2e(b-2a)%) £

= [c2+(b-Za)2]{G2 + [cz*(b-Za)Z]fz}

Finally § = P'T'lh . We find £ , and can then replace a and B8 by

-~

estimates a and B to obtain £ .

Component 52 is now the same as 53 of Section 6.1; the new Es is

cf 0 0
E = }- [-cG (b-za)G {(b-23)2+c2}f] "/i' -bf af 0 h
3 m ’ : ’ Bacf
be-cd -ae ac
2 2 2 '
-c"fG -~ bf(b-2a)G + [(b-2a)" + ¢ ]f(be-cd)
-1 Bfff af (b-22)G - aef[(b-2a)% + ¢ h
acf[(b-2a)2 + 2]
acf12(1+a) (3a+8) '
. % . Bff -acf3(1+a) (26+9a) | h

acf2(1+a) (10+3a)

N
NS UASER LSRN SEAR "\3
Rt N N Y S

»'
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12(8+3a) |

. & _(1+a) -3(26+9a)| h

2(10+3a)
with

m2 = [c2+(b-22)2][GP+{c2e (b-22) %1 £2)

2

= 2(10+3a) (a+1)12(1+a)° (2+a) (39+190+3a2)

= 24(1+a)> (10+3a) (2+a) (39+19a+3a2)

We obtain

2 v2

&3 = 3.2
24(1+a) (10+3a) (2+a) (39+19a+3a’)8

where

kz k3 k4
V = 12(8+3a) - 3(26+9a) ot 2(10+3a) o
1 2 3
To obtain Ei we replace a and B by their moment estimators o = kf/k2
and B = kzlk1 . Then

~ ~ ~ ~ ~ ~

222 . . . .
Q2 = n(£2+£3) = Q1 + C2 where Q1 is given in Section 6.1, and

~ Aa,
-

C2 = n£3
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2
7. FURTHER REMARKS !

The techniques which have been explored above lead to goodness-of-fit ¢

statistics based on sample moments; the test statistic can be made dependent '§€
. : S
on more moments by adding new components. These components are asymptotically XX
independent, and can be expected to test for different departures from the A
it
: s s X o
tested distribution, analogous to components of EDF statistics (Durbin and “gg
i
Knott, 1972; Stephens, 1974) or those of Néyman's statistic (Miller and .h&
Quesenberry, 1978). It has been shown how Q_ , for small t , 1leads to W
i
. I3 . ‘
tests for normality and exponentiality based on already well-known statistics, '%ﬁn
2o
O
i by
and the alternatives for which these are powerful are generally recognized; h?b
however, the power of higher-order components to detect important departures ;ﬁ}
X
Qi
. N N OO
- must be investigated. A related question is how many components to take, since $$$
hig
. . . fy 1V
the addition of too many can weaken the overall power against important fba
alternatives (see Solomon and Stephens 1982 for remarks on Neyman's statistic “’Jﬁ
. N Q:
which are also relevant here; also Durbin and Knott, 1972, Miller and 1#
o
Quesenberry, 1978). ' fhf
oY
We note also that the technique is not unique: other functions of moments .
\
et
can be made linear in unknown parameters and will lead to other test statistics. N ﬂ
Interesting questions then remain on how best to choose § . These questions, | .
i
and the practical questions of producing points for finite n , and power ﬁym
| o
studies, are currently being investigated. R
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